
M A GI C
and how to do it yourself

Chapter 1: Introduction

1.1 Shaders, the reason to read your way through this

When talking about shaders, people usually think of a couple of exaggerated special 
effects like specularity, parallax occlusion mapping, bloom and blur effects and believe that 
they can do most things better without shaders.
But in reality, shaders are already a needed part of the rendering pipeline. They are basicly 
small programs, usually one executed for each vertex of the rendered mesh (a vertex 
shader program) and one for each „visible“ pixel/fragment (the pixel shader program or 
also fragment shader program) of the rendered mesh. These shader programs are 
designed to be executed very efficiently in parallel on the graphics card. The main task of 
the vertex shader is to project the meshs vertex positions from their local coordinate 
system into the coordinate system of your monitor applying scaling, rotation and 
translation of the object and the camera and the final projection to 2D. The pixel shader 
has to determine the drawn pixels color which is usually looked up from a texture using the 



vertices texture coordinates which are automatically interpolated between the pixels. To 
the texture color one usually applies some shading calculated in the vertex or pixelshader, 
or both.
As there are usually more drawn pixels than vertices, the vertex shader can usually be 
more complex than the pixel shader.
Before there were shaders, there was the fixed function pipeline. It did exactly the things I 
described above (often referred to as hardware transformation and lighting (T&L)) and 
offered an interface to manipulate it a little bit. This fixed function pipeline was part of the 
graphics hardware for a couple of years and is now mostly replaced completely by 
shaders. The hardware with a real fixed function pipeline is mostly the one of mobile 
phones like the iPhone 3G. The iPhone 3GS  and later however already have a full shader 
based rendering as well as several other current mobile phones. NVIDIAs upcoming Tesla 
solution which will probably be part of many future mobiles is also completely shader 
based.
All hardware without a fixed function pipeline emulates it using shaders!
This means that the correct shader has to be choosen again and again, which of course 
means a small performance loss compared to directly assigning the correct selfwritten 
shaders. Directly assigning the correct shaders also allows to use simplified shading 
calculations on some objects and some more complex effects on others, which can help 
you to make your scenes look better and run at a higher speed, than without shaders.
But you always have to keep in mind that more advanced shaders are of course slower 
than simple ones, which means that in the best case you doń t have few quite complex, 
general shaders, but instead many different shaders for each slightly different situation and 
while this probably shows very well how flexible shaders are, it also shows their big 
disadvantage compared to the fixed function pipeline. Writing many different shaders 
means a lot of extra work compared to just enable lighting, placing up to eight lights and 
then render everything, which is how it basicly works with the FFP.
However, when looking on current and future devices, there is no way around shaders and 
upcoming graphics APIs probably woń t even support the fixed function pipeline anymore, 
like OpenGL E S  2.0 for example already does.

1.2 Object and Post Processing shaders

I tend to differentiate between object and post processing shaders. Technically it is both 
the same, but when using and writing them they just feel different. A object shader is a 
shader directly used to render an object as a part of the scene. A full screen post 
processing shader in contrast is a shader applied to a screen aligned quad which 
processes an image of the previously rendered scene. This means that one has to render 
the scene to a texture and not to the screen.

1.3 Shader languages

In the very beginning of hardware supporting shaders, developers had to write their 
shaders in assembler, but soon the High Level Shading Language (HLSL) was developed 
for DirectX and the OpenGL Shading Language (GLSL) for OpenGL. A bit later, NVIDIA 
introduced C for Graphics (CG), which is basically the same as HLSL, but compiles to 
DirectX as well as to OpenGL shader code, and works with basically any graphics card, 
not only NVIDIA ones, as one may expect.
I personally prefer the naming conventions of HLSL/CG, which is also less strict than 
GLSL if it comes to typecasting (converting from int to float for example, as GLSL code 



woń t compile if one assigns 1 to a float, while 1.0 works fine of course, and both usually 
works with HLSL/CG).
In the end they are all based on the C  syntax with some minor differences in naming and 
setting up registers to pass variables to from the vertex to the pixel shader.
Because of this, I will provide all examples in HLSL/CG and may add a chapter on how to 
convert your HLSL/CG code to GLSL, which seems to have a bright future on mobile 
devices

1.4 Coordinate systems and transformations

For writing shaders, you need to understand some basics about different coordinate 
systems and on how to transform between them. The coordinate system of most vertices 
pushed into the rendering pipeline will usually be the one you know from within your model 
editor, which is sometimes rotated or mirrored on export to fit your engines defaults. In this 
coordinate system, each vertex has a three dimensional position and the center is usually 
within or close to your mesh. This coordinate system is usually called object space or local 
space. This mesh is then placed within your level with a position, a rotation and a scale 
relative to your levels origin. This is often refered to as world space or global space. Now 
within your level, you usually also place a camera/viewer. When looking through the 
camera, you will see the objects in your world space from the cameras point of view, the 
so called view space or camera space. The origin of the view space is the cameras center.
As you usually watch your level through the camera on your flat monitor, there is also the 
projection space, which is a two dimensional image created by projecting your three 
dimensional camera space to a a plane with the monitors center as origin. The projection 
also applys the camera attributes like the field of view and the aspect ratio.
As the vertex shader receives the vertices in object space and should output them in 
projection space, one has to transform the vertex position to world space, to view space 
and then to projection space. These transformations are usually done by multiplying the 
vertex positions with matrices provided by the engine. It is also possible to invert such a 
matrix to transform the other way around with it. The order of a matrices values in OpenGL 
is usually a bit different than the one used in DirectX, which means that one usually have 
to multiply the other way around in OpenGL than in DirectX. The order of the multiplication 
is important as a matrix multiplication isń t commutative.
This means that A*B is not B*A if A and B are matrices (a vector is a matrix with just one 
row/column). In some cases A*B is the same as B*Ainv, where Ainv is the inverted A matrix 
and A*B is always B*Atrans, where Atrans is the transposed A matrix, which means that 
rows and columns are swapped which is also the difference between OpenGL and DirectX 
matrices.
When multiplying several matrices and finally transforming a vector with the result, the 
transformations of each matrix is applied in the order of multiplication to the vector. This 
matrix is usually provided by the engine as WorldViewProjectionMatrix or something 
similar and allows to simplify the transformation formula within a vertex shader.
In the end, this is no hard maths or something, but the math behind a matrix multiplication 
tends to confuse, especially when working with both, DirectX and OpenGL. And the most 
important thing to keep in mind is to check the order of multiplication if something behaves 
really strange.
There are of course some more coordinate systems one may needs when using tangent 
space normalmaps or when doing animations on the GPU.

1.5 Shading



Shading or lighting, is the process of determining the brightness and tone of a drawn pixel 
which is then multiplied and/or added to a pixels initial color taken from for example a 
texture.
The shading usually consists of ambient lighting, diffuse lighting and specular lighting. 
Ambient light is the general brightness caused by light being reflected and scattered 
through the whole scene kinda randomly. The ambient light is usually just a constant 
factor. The diffuse light is the light directly illuminating the surface, which is then scattered 
into all directions. The diffuse lighting is usually calculated based on Lambert́ s cosine law, 
which basicly says that the light intensity observed from a completely diffuse surface is 
proportional to the cosine of the angle betwen the light direction vector and the surface 
normal vector. As the cosine of that angle is the same as the dot product of the two 
vectors, this can be calculated really easily with good performance.
The specular light is the light which is directly reflected into the viewers eyes by the 
surface. This would be the only lighting technique for a perfect mirror and is the most 
complex part of the usual shading and usually based on a formula developed by Bui Tuong 
Phong which was later improved by Jim Blinn and is now known as the Blinn-Phong 
reflection model. While it is not based on physics in any ways, it produces some very 
decent results. It uses the vector pointing to a point between the light and the viewer, 
which would also be the ideal normal for full reflection, usually called half vector, which is 
then compared with the surface normal using the dot product.

1.6 Fog, Multitexturing and other extensions

Most hardware offers more than just the very basic transformation and lighting. Fog is for 
example a very useful effect, which can usually be activated using the fixed function 
pipeline, based on a start and end value and a color. The color will completely cover all 
parts further away than the end value and woń t effect the parts closer than the start value. 
In between it is blended over the color without fog and one can often choose if it is meant 
to be linear or quadratic. On most hardware and up to shadermodel 2 when working with 
DirectX, it is possible to calculate a fog factor within the vertex shader and pass it to some 
special fog register. Everything else will than be handled automatically. A basic formula for 
a linear fog factor is fog = (camdist-fogstart)/(fogend-fogstart).
Another great thing can be multitexturing. This means that one pixel can be influenced by 
more than one texture in one draw call and offers a fast possibility to realize effects like for 
example detailmapping and blending different textures together based on the textures 
alpha channel.
It also makes the basis of bump and environment mapping which is supported on some 
hardware through the FFP as well.
While multitexturing is not a must for shader hardware, it is usually possible to use at least 
four textures per pixel and often a lot more.

1.7 Renderstates

Before rendering, it is possible to setup some behavior not influenceable from within the 
shader, the so called renderstates. These renderstates define, which colors of a pixel are 
meant to be drawn, if a pixel is meant to draw into the depth buffer and if it is meant to be 
drawn if covered by another pixel or if there is another pixel at exactly the same position 
and so on. It is also possible to activate and deactivate backface culling (clipping of faces 
not facing the camera) and to specify how to blend the rendered pixel over the pixels 



drawn before at the same position. Good knowledge of the use of renderstates can be 
very helpful if it comes to the rendering of translucent objects.

1.8 Passes

To render an object in several passes means that it is rendered several times. The 
geometry and texture data is usually exactly the same, but the shader and render states 
are usually different. This allows to create quite complex effects on hardware that is too 
restricted to do the effect in just one shader. It is also an easy possibility for fur and outline 
effects.

1.9 Uniforms, attributes, varyings and registers

In OpenGL and DirectX, there are uniforms which are variables passed from the engine to 
the shader, which are uniform for all vertices and pixels they were set for before rendering, 
usually per object. Important uniforms which are often set up per default by the engine are 
the transformation matrices needed for transforming the vertex positions and the light and 
material properties as well as often the camera position and information about the fog. 
Other important uniforms are the textures.
Attributes are variables which are set per vertex. Important attributes are the vertex 
position, the vertex normal and the vertices texture coordinates. There can be some more, 
but these are the ones defined by the default vertex format in nearly every engine. In 
OpenGL the attributes can have any name, but there are some predefined ones in most 
OpenGL versions.
Varyings are variables passed from the vertex shader to the pixel shader. They are set up 
within the shader and their values are linearly interpolated for each pixel between the 
vertices.
Attributes and varyings are mainly concepts of OpenGL and are replaced in DirectX with 
the concept of registers. In DirectX it is possible to assign variables to registers, with 
predefined names.  The register names for the attributes mentioned above are PO SITION, 
NORMAL0 and TEXCOORD0. The variable assigned to such a register will access the 
value from within the register and write to it. The registers used for varyings are usually 
COLORn and TEXCOORDn, where n is a number between 0 and a limit by the 
shadermodel.
The vertex shader always has to output a position. The register it has to be passed to is 
called POSITION. In OpenGL, it has to be assigned to a predefined variable called 
gl_Position.
The pixel shader has to output one or more colors. The registers for this are COLORn and 
the OpenGL variables are gl_Colorn.


