
M A GI C
and how to do it yourself

Chapter 1: Introduction

1.1 Shaders, the reason to read your way through this

When talking about shaders, people usually think of a couple of exaggerated special
effects like specularity, parallax occlusion mapping, bloom and blur effects and believe that
they can do most things better without shaders.
But in reality, shaders are already a needed part of the rendering pipeline. They are basicly
small programs, usually one executed for each vertex of the rendered mesh (a vertex
shader program) and one for each „visible“ pixel/fragment (the pixel shader program or
also fragment shader program) of the rendered mesh. These shader programs are
designed to be executed very efficiently in parallel on the graphics card. The main task of
the vertex shader is to project the meshs vertex positions from their local coordinate
system into the coordinate system of your monitor applying scaling, rotation and
translation of the object and the camera and the final projection to 2D. The pixel shader
has to determine the drawn pixels color which is usually looked up from a texture using the

vertices texture coordinates which are automatically interpolated between the pixels. To
the texture color one usually applies some shading calculated in the vertex or pixelshader,
or both.
As there are usually more drawn pixels than vertices, the vertex shader can usually be
more complex than the pixel shader.
Before there were shaders, there was the fixed function pipeline. It did exactly the things I
described above (often referred to as hardware transformation and lighting (T&L)) and
offered an interface to manipulate it a little bit. This fixed function pipeline was part of the
graphics hardware for a couple of years and is now mostly replaced completely by
shaders. The hardware with a real fixed function pipeline is mostly the one of mobile
phones like the iPhone 3G. The iPhone 3GS and later however already have a full shader
based rendering as well as several other current mobile phones. NVIDIAs upcoming Tesla
solution which will probably be part of many future mobiles is also completely shader
based.
All hardware without a fixed function pipeline emulates it using shaders!
This means that the correct shader has to be choosen again and again, which of course
means a small performance loss compared to directly assigning the correct selfwritten
shaders. Directly assigning the correct shaders also allows to use simplified shading
calculations on some objects and some more complex effects on others, which can help
you to make your scenes look better and run at a higher speed, than without shaders.
But you always have to keep in mind that more advanced shaders are of course slower
than simple ones, which means that in the best case you doń t have few quite complex,
general shaders, but instead many different shaders for each slightly different situation and
while this probably shows very well how flexible shaders are, it also shows their big
disadvantage compared to the fixed function pipeline. Writing many different shaders
means a lot of extra work compared to just enable lighting, placing up to eight lights and
then render everything, which is how it basicly works with the FFP.
However, when looking on current and future devices, there is no way around shaders and
upcoming graphics APIs probably woń t even support the fixed function pipeline anymore,
like OpenGL E S 2.0 for example already does.

1.2 Object and Post Processing shaders

I tend to differentiate between object and post processing shaders. Technically it is both
the same, but when using and writing them they just feel different. A object shader is a
shader directly used to render an object as a part of the scene. A full screen post
processing shader in contrast is a shader applied to a screen aligned quad which
processes an image of the previously rendered scene. This means that one has to render
the scene to a texture and not to the screen.

1.3 Shader languages

In the very beginning of hardware supporting shaders, developers had to write their
shaders in assembler, but soon the High Level Shading Language (HLSL) was developed
for DirectX and the OpenGL Shading Language (GLSL) for OpenGL. A bit later, NVIDIA
introduced C for Graphics (CG), which is basically the same as HLSL, but compiles to
DirectX as well as to OpenGL shader code, and works with basically any graphics card,
not only NVIDIA ones, as one may expect.
I personally prefer the naming conventions of HLSL/CG, which is also less strict than
GLSL if it comes to typecasting (converting from int to float for example, as GLSL code

woń t compile if one assigns 1 to a float, while 1.0 works fine of course, and both usually
works with HLSL/CG).
In the end they are all based on the C syntax with some minor differences in naming and
setting up registers to pass variables to from the vertex to the pixel shader.
Because of this, I will provide all examples in HLSL/CG and may add a chapter on how to
convert your HLSL/CG code to GLSL, which seems to have a bright future on mobile
devices

1.4 Coordinate systems and transformations

For writing shaders, you need to understand some basics about different coordinate
systems and on how to transform between them. The coordinate system of most vertices
pushed into the rendering pipeline will usually be the one you know from within your model
editor, which is sometimes rotated or mirrored on export to fit your engines defaults. In this
coordinate system, each vertex has a three dimensional position and the center is usually
within or close to your mesh. This coordinate system is usually called object space or local
space. This mesh is then placed within your level with a position, a rotation and a scale
relative to your levels origin. This is often refered to as world space or global space. Now
within your level, you usually also place a camera/viewer. When looking through the
camera, you will see the objects in your world space from the cameras point of view, the
so called view space or camera space. The origin of the view space is the cameras center.
As you usually watch your level through the camera on your flat monitor, there is also the
projection space, which is a two dimensional image created by projecting your three
dimensional camera space to a a plane with the monitors center as origin. The projection
also applys the camera attributes like the field of view and the aspect ratio.
As the vertex shader receives the vertices in object space and should output them in
projection space, one has to transform the vertex position to world space, to view space
and then to projection space. These transformations are usually done by multiplying the
vertex positions with matrices provided by the engine. It is also possible to invert such a
matrix to transform the other way around with it. The order of a matrices values in OpenGL
is usually a bit different than the one used in DirectX, which means that one usually have
to multiply the other way around in OpenGL than in DirectX. The order of the multiplication
is important as a matrix multiplication isń t commutative.
This means that A*B is not B*A if A and B are matrices (a vector is a matrix with just one
row/column). In some cases A*B is the same as B*Ainv, where Ainv is the inverted A matrix
and A*B is always B*Atrans, where Atrans is the transposed A matrix, which means that
rows and columns are swapped which is also the difference between OpenGL and DirectX
matrices.
When multiplying several matrices and finally transforming a vector with the result, the
transformations of each matrix is applied in the order of multiplication to the vector. This
matrix is usually provided by the engine as WorldViewProjectionMatrix or something
similar and allows to simplify the transformation formula within a vertex shader.
In the end, this is no hard maths or something, but the math behind a matrix multiplication
tends to confuse, especially when working with both, DirectX and OpenGL. And the most
important thing to keep in mind is to check the order of multiplication if something behaves
really strange.
There are of course some more coordinate systems one may needs when using tangent
space normalmaps or when doing animations on the GPU.

1.5 Shading

Shading or lighting, is the process of determining the brightness and tone of a drawn pixel
which is then multiplied and/or added to a pixels initial color taken from for example a
texture.
The shading usually consists of ambient lighting, diffuse lighting and specular lighting.
Ambient light is the general brightness caused by light being reflected and scattered
through the whole scene kinda randomly. The ambient light is usually just a constant
factor. The diffuse light is the light directly illuminating the surface, which is then scattered
into all directions. The diffuse lighting is usually calculated based on Lambert́ s cosine law,
which basicly says that the light intensity observed from a completely diffuse surface is
proportional to the cosine of the angle betwen the light direction vector and the surface
normal vector. As the cosine of that angle is the same as the dot product of the two
vectors, this can be calculated really easily with good performance.
The specular light is the light which is directly reflected into the viewers eyes by the
surface. This would be the only lighting technique for a perfect mirror and is the most
complex part of the usual shading and usually based on a formula developed by Bui Tuong
Phong which was later improved by Jim Blinn and is now known as the Blinn-Phong
reflection model. While it is not based on physics in any ways, it produces some very
decent results. It uses the vector pointing to a point between the light and the viewer,
which would also be the ideal normal for full reflection, usually called half vector, which is
then compared with the surface normal using the dot product.

1.6 Fog, Multitexturing and other extensions

Most hardware offers more than just the very basic transformation and lighting. Fog is for
example a very useful effect, which can usually be activated using the fixed function
pipeline, based on a start and end value and a color. The color will completely cover all
parts further away than the end value and woń t effect the parts closer than the start value.
In between it is blended over the color without fog and one can often choose if it is meant
to be linear or quadratic. On most hardware and up to shadermodel 2 when working with
DirectX, it is possible to calculate a fog factor within the vertex shader and pass it to some
special fog register. Everything else will than be handled automatically. A basic formula for
a linear fog factor is fog = (camdist-fogstart)/(fogend-fogstart).
Another great thing can be multitexturing. This means that one pixel can be influenced by
more than one texture in one draw call and offers a fast possibility to realize effects like for
example detailmapping and blending different textures together based on the textures
alpha channel.
It also makes the basis of bump and environment mapping which is supported on some
hardware through the FFP as well.
While multitexturing is not a must for shader hardware, it is usually possible to use at least
four textures per pixel and often a lot more.

1.7 Renderstates

Before rendering, it is possible to setup some behavior not influenceable from within the
shader, the so called renderstates. These renderstates define, which colors of a pixel are
meant to be drawn, if a pixel is meant to draw into the depth buffer and if it is meant to be
drawn if covered by another pixel or if there is another pixel at exactly the same position
and so on. It is also possible to activate and deactivate backface culling (clipping of faces
not facing the camera) and to specify how to blend the rendered pixel over the pixels

drawn before at the same position. Good knowledge of the use of renderstates can be
very helpful if it comes to the rendering of translucent objects.

1.8 Passes

To render an object in several passes means that it is rendered several times. The
geometry and texture data is usually exactly the same, but the shader and render states
are usually different. This allows to create quite complex effects on hardware that is too
restricted to do the effect in just one shader. It is also an easy possibility for fur and outline
effects.

1.9 Uniforms, attributes, varyings and registers

In OpenGL and DirectX, there are uniforms which are variables passed from the engine to
the shader, which are uniform for all vertices and pixels they were set for before rendering,
usually per object. Important uniforms which are often set up per default by the engine are
the transformation matrices needed for transforming the vertex positions and the light and
material properties as well as often the camera position and information about the fog.
Other important uniforms are the textures.
Attributes are variables which are set per vertex. Important attributes are the vertex
position, the vertex normal and the vertices texture coordinates. There can be some more,
but these are the ones defined by the default vertex format in nearly every engine. In
OpenGL the attributes can have any name, but there are some predefined ones in most
OpenGL versions.
Varyings are variables passed from the vertex shader to the pixel shader. They are set up
within the shader and their values are linearly interpolated for each pixel between the
vertices.
Attributes and varyings are mainly concepts of OpenGL and are replaced in DirectX with
the concept of registers. In DirectX it is possible to assign variables to registers, with
predefined names. The register names for the attributes mentioned above are PO SITION,
NORMAL0 and TEXCOORD0. The variable assigned to such a register will access the
value from within the register and write to it. The registers used for varyings are usually
COLORn and TEXCOORDn, where n is a number between 0 and a limit by the
shadermodel.
The vertex shader always has to output a position. The register it has to be passed to is
called POSITION. In OpenGL, it has to be assigned to a predefined variable called
gl_Position.
The pixel shader has to output one or more colors. The registers for this are COLORn and
the OpenGL variables are gl_Colorn.

