
Coordinate Systems and other abstract things

Introduction
The following is a writeup of my thoughts, experience and research. It may seem 
kinda messy and some things can be wrong or incomplete, so feel free to correct me if
you know better. While this topic is not that complicated, parts of it are quite hard to 
explain and information on some of the things I write about are really scattered on the
internet, which is the reason for this.

Basics
Since displays usually have something like pixels and in the end we usually want to 
assign a value to each of those pixels, it is a very good idea to align a coordinate 
system with those pixels.
This coordinate system could have just one axis, assuming all pixels are indexed as if 
they were on a line, but in reality the display has a 2D surface, so the more straight 
forward thought is to use 2 axes, where one addresses the columns and one the rows 
and this is what is usually done.
It does not matter how those axes are called, but it is common to call them x and y, 
and z if we need a third one, where it again does not matter which one represents 
which direction. The axes don´t even have to be in alignment with the hardware 
pixels and they don´t have to be orthogonal, although this makes things a lot easier 
and is what I am going to talk about. It is also not important where the origin of this 
coordinate system is.

As an example, when addressing a single pixel in OpenGL it expects an x value for the
horizontal position and an y value for the vertical one, where x grows to the right, y 
from bottom to top and the origin is the bottom left corner.
In DirectX on the other hand, the origin is assumed to be in the top left corner and y 
is growing from top to bottom.
These assumptions about the graphics APIs are consistent (I am not completely sure 
about DirectX here...) and also like this when drawing 2D geometry, except that the 
origin is assumed to be in the center of the screen in both APIs.



Handedness
But we want to draw 3D geometry which means, that we need a third axis. This new z
axis is by default assumed to point from inside the screen towards the viewer in both, 
OpenGL and DirectX, although it only effects the value written in the depth buffer and 
thus the depth test function is what really defines the orientation of the z axis. 
Assuming the default setting of the depth test to fail if the new z is smaller than the 
old one, we can now just align our fingers with these x, y and z axes, where the 
thumb represents the x axis, the index finger the y axis and the middle finger the z 
axis and we will notice that the coordinate system assumed by DirectX can only be 
represented by our left hand, which makes it a so called left handed coordinate 
system and the OpenGL one can only be realized with the right hand which makes it a
right handed coordinate system.
In the following I will focus on OpenGL, but the same ideas apply to DirectX.

(Source: 
http://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg)

Projections
When rendering polygons through the hardware with pass through shaders, their 
vertex positions are expected to be in normalized device coordinates (NDC) with the 



visible area ranging from -1 to 1 for all three axes. Everything outside those values is 
not visible and (0, 0, 0) represents the center of the screen. This also means that 
visible z values will range from 0 to -1.
With this knowledge, it is possible to push 3D meshes within those restrictions into 
the rendering pipeline. If the NDC ranges are too small for a task because you prefer 
to have your vertex positions specified in meters for example, you can just use a so 
called orthogonal projection matrix which does not do more than scaling the bigger 
values down. The problem with this is that objects far away will still look as if they 
were just in front of the camera because they don´t get smaller in the distance.
This is sometimes wanted, but it looks wrong. To have far away objects appear 
smaller the further away they are, one can transform the geometry with a perspective
projection matrix instead of an orthogonal one (for more information on projection 
matrices see for example http://www.songho.ca/opengl/gl_projectionmatrix.html).
While the projection matrices could flip the axes and handedness, it is less confusing 
to just stick with the defaults, so that the handedness can be ignored from here on as 
everything else will just work.

Basic Transformations
What we probably want as a user is to provide a couple of meshes, define their 
position, scale and orientation within a 3D world and see them from a camera with a 
position and orientation within this same world.

The easy part is the position. The meshes consist of a couple of vertices which are x, y
and z values and to change the position of a mesh to for example (1, 2, 3) these 
values just have to be added to each of the vertices.
If we now want to move the camera to the same position, those values have to be 
subtracted from each vertices position and the result looks as if either the camera nor 
the mesh has been moved, because relative to each other they haven´t.
Scaling can be done by multiplying each vertex position with some factor.

http://www.songho.ca/opengl/gl_projectionmatrix.html


While the previous ideas are straight forward and not really something to think about 
(but there are of course different ways to represent position information than just as 
an x, y and z offset), things get quite complicated with the orientations.

Euler angles
There are Euler angles, Tait-Bryan angles, angle-axis/axis-angle, quaternions, 
matrices, look-at and up vector and probably many more ways to represent 
orientations. Euler angles describe a series of rotations around the objects local 
coordinate system axes as for example x-y'-x'' where the ' signals that it is the 
resulting axis from the previous part of the rotation. Other sequences are very well 
possible and always describe different orientations for the same values.
This is very easy to use and usually behaves as expected, except when it does not, 
like when changing all three values at once, where the sequential character might feel
strange to some people. The bigger problem is the so called gimbal lock, which is a 
situation where the rotated local axis for the next part of the rotation falls on the 
exact same axis as the first one. This means that one of the rotation values has no 
effect at all. As a result, Euler angles are working great for first person shooters, 
where you usually just turn around and look up and down, but are a really bad choice 
for space games where you need all 6 degrees of freedom, which will get really ugly 
when trying to do calculations with Euler angles.



Axis-Angle
Axis-angle representation, which uses a single angle describing a rotation around an 
arbitrary axis, has the disadvantage of 4 values that need to be stored for each object
instead of 3 compared to Euler angles, but they work great for representing 
orientations and are kinda useless if you want to do any calculations with them...

Quaternions
The solution are quaternions, which are complex numbers with three imaginary parts 
and one real part. The fact that they are mathematical numbers results in rules for 
adding, subtracting, multiplying and dividing them with each other.
The three imaginary parts are usually stored as x, y and z while the real part is stored
as w. Those values are best compared with those of the angle-axis representation 
because the quaternions w part is the Cosine of the angle and the x, y and z parts 
describe the orientation axis combined with the sinus of the angle, which makes the 
transformation between angle-axis and quaternion representation trivial.

A quaternion multiplication means the composition of the two rotations. Also A*B is 
different to B*A. A division is the composition of the first rotation with the inverse of 
the second rotation.
Another nice feature of quaternions is the so called SLERP function, which allows to 
interpolate between two quaternions in a very clean way 
(http://en.wikipedia.org/wiki/Slerp).
Because of all this, quaternions are actually a very good choice to represent 
orientations in 3 dimensions, but because they are also very abstract it is often useful 
to create them from angle-axis, as shown above or from Euler angles. The Euler angle
part is tricky because there are so many different ways to express the same 
orientation through Euler angles, so in the end you should probably focus on one good
working representation for the use case.

Matrices
Now I need to get a bit into matrices which can also be used to represent rotations. A 
3D rotation matrix however needs 3*3 values, which is a disadvantage to quaternions.



On the other hand they can be multiplied very well, but needing more processing 
power than quaternions. Creating a rotation matrix from a quaternion is trivial and 
they can also be created from angle-axis and thus also from Euler angles by 
multiplying the rotation matrices for the angle around each of the world axes together.
In the latter case the order of the multiplication defines the meaning of the Euler 
angles values.

Putting everything together
As a last step everything has to be put together. And since graphics hardware is 
optimized on vector and matrix math and because a matrix can represent an objects 
position, scale and orientation as well as the position and orientation of the camera 
and the projection matrix and if needed even more things in just one matrix, a matrix 
is what we need to create from the data stored in the vectors and quaternions.



So all the data can be transformed to matrices which now have to be combined in the 
correct order.
Usually an object is supposed to be rotated around its own center, not the worlds 
center, which is the same if no other transformation is applied, so this is a good matrix
to start with. Next up is the scaling, but it usually does not matter if you scale or 
rotate first. After this the object should be moved to its position with the translation 
matrix and because the cameras translation is still not in the result, we now want 
everything to rotate around the camera in the opposite direction of the camera 
orientation and then multiply with the cameras inverse translation matrix moving 
everything in the opposite direction of the camera position. The last transform is the 
projection matrix.

The resulting matrix can then be send to the vertex shader together with the raw 
mesh data where the matrix transformation will then be applied and the result is 
displayed on screen.

Notes
General notes
Translation, rotation and scale do not care about handedness, they will just work the 
way they should within their coordinate systems.
The only reason to think about the handedness within your coordinate system is to 
find out if a positive z is in front or behind the screen.
And while the whole internet seems to be discussing about the non existing of 
quaternion handedness, the handedness just does not matter and is a totally 
overrated and confusing property of a coordinate system.

Some more notes on matrices
Transforming a 3D vector with a 3x3 matrix cannot do any translation. To solve this, a 
higher dimensional vector and matrix is used.



Rotation matrices are so called orthogonal matrices, meaning their inverse is the same
as the transposed matrix.
This won´t work for translation and scaling matrices which are however trivial to 
invert.



DirectX expects matrices to be row major, while OpenGL wants them column major.



Some more notes on Euler angle - quaternion conversion
There are so many different ways to do this, but I decided for the rotation around the 
y axis (yaw) first, followed by the rotation around the x axis (pitch) and in the end the
rotation around the z axis (roll) and here the order of the multiplication and the way 
the matrices are stored (column or row major) matter a lot :P

The best way to determine how to transform Euler angles to quaternions is to create 
axis angle quaternions for each of the axes and multiply them in the wanted order.
This can be optimized be removing unneeded parts of the multiplication due to zeros 
(http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuat
ernion/Euler%20to%20quat.pdf).

The best way to determine how to transform quaternions to Euler angles seems to be,
to multiply the base rotation matrices in the wanted order, find a formula to extract 
the angles from the matrix values and link the result with the quaternion to matrix 
conversion. In the end, some singularities need to be handled 
(http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionT
oEuler/quat_2_euler_paper_ver2-1.pdf).

http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/Euler%20to%20quat.pdf
http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/Euler%20to%20quat.pdf
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf

